Positive Solutions of Periodic Boundary Value Problems for a Class of Second-order Ordinary Differential Equations

Hongliang Kang

Abstract

In this paper, we consider the existence of positive solutions to the second-order periodic boundary value problems $\left\{\begin{array}{l}u^{\prime \prime}(x)+d^{2} u(x)=\lambda a(x) f(u), x \in(\mathrm{O}, T) \\ u(\mathrm{O})=u(T), u^{\prime}(\mathrm{O})=u^{\prime}(T) .\end{array}\right.$ $u(\mathrm{O})=u(T), u^{\prime}(\mathrm{O})=u^{\prime}(T)$.

Where $f: R^{+} \rightarrow R$ is continuous, $f(0)>0, d$ is a constant, $a:(0, T) \rightarrow R$ may change sign, and $\lambda>0$ is sufficiently small. Our approach is based on the Leray-Schauder fixed point theorem.

Index Terms— Leray-Schauder fixed point theorem, Periodic boundary value problems, Positive solutions, Existence.

MSC(2010):-39A10, 39A12

I. INTRODUCTION

Recently, periodic boundary value problems have been studied extensively ${ }^{[1-12]}$. [1] uses the cone fixed point theorem to study the existence of positive solutions of the second-order ω-periodic boundary value problem. [2] deal with periodic boundary value problems using the method of upper and lower solutions.

In particular, in 1998 , Jiang ${ }^{[3]}$ obtained the existence of positive solutions by using Krasnoselskiis fixed point theorem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+M u=f(t, u), x \in(0,2 \pi) \tag{1.1}\\
u(0)=u(2 \pi), u^{\prime}(0)=u^{\prime}(2 \pi)
\end{array}\right.
$$

The main results are as follows:
Theorem A Assume that $f(t, u):[0,2 \pi] \times[0, \infty) \rightarrow[0, \infty)$ is continuous, Then the periodic boundary value problem (1.1) has a positive solutions, provided $M>0$ and one of the following conditions hold:
(A1) $\lim _{u \rightarrow 0} \max _{t \in[0,2 \pi]} \frac{f(t, u)}{u}=0$, and $\lim _{u \rightarrow 0} \max _{t \in[0,2 \pi]} \frac{f(t, u)}{u}=\infty \quad$ or
(A2) $\lim _{u \rightarrow 0} \min _{t \in[0,2 \pi]} \frac{f(t, u)}{u}=\infty$, and $\lim _{u \rightarrow 0} \min _{t \in[0,2 \pi]} \frac{f(t, u)}{u}=0$.
In 2010 , $\mathrm{Hao}^{[4]}$ used the fixed point index theorem to discuss the existence, multiplicity and nonexistence of positive solutions for periodic boundary value problems

$$
\left\{\begin{array}{l}
u^{\prime \prime}+a(t) u=\lambda f(t, u), \quad x \in(0,2 \pi) \tag{1.2}\\
u(0)=u(2 \pi), u^{\prime}(0)=u^{\prime}(2 \pi)
\end{array}\right.
$$

where $a \in L^{1}(0,2 \pi), \lambda>0$.
The main results are as follows:
Theorem B Assume that $f:[0,2 \pi] \times[0, \infty) \rightarrow[0, \infty)$ is continuous, and

$$
f_{\infty}=\lim _{x \rightarrow+\infty} \min _{t \in[0,2 \pi]} \frac{f(t, x)}{x}=\infty
$$

Then there exist $\lambda^{*}>0$, such that the periodic boundary value problem (1.2) has at least two positive solutions for $0<\lambda<\lambda^{*}$, at least one positive solution for $\lambda=\lambda^{*}$ and no positive solution for $\lambda>\lambda^{*}$.
It is worth noting that [3] and [4] consider the case of $f:[0,2 \pi] \times[0, \infty) \rightarrow[0, \infty)$ is continuous, However, we will discuss the broader situation $f:[0, T] \times R^{+} \rightarrow R$ is continuous. And as far as we know, second-order periodic boundary value problems have not been studied by applying the Leray-Schauder fixed point theorem.

Motivated by the above works, we will apply the Leray-Schauder fixed point theorem to establish the existence of positive solutions to the following second-order periodic value problems

$$
\left\{\begin{array}{l}
u^{\prime \prime}(x)+d^{2} u(x)=\lambda a(x) f(u), x \in(0, T) \tag{1.3}\\
u(0)=u(T), u^{\prime}(0)=u^{\prime}(T)
\end{array}\right.
$$

We make the following assumptions:
(H1) $\quad f: R^{+} \rightarrow R \quad$ is continuous, $\quad f(0)>0$
$\lambda>0, d>0$ and $d^{2}<\frac{4}{T} ;$
(H2) a is a constant on $[0, T]$, and not identically zero, there exists a number $k>1$ such that

$$
\int_{0}^{T} k(x, y) a^{+}(y) d y \geq k \int_{0}^{T} k(x, y) a^{-}(y) d y
$$

for every $x \in[0, T]$,where a^{+}(resp. a^{-}) is the positive (resp.negative) part of $a, K(x, y)$ is the Green's function of

$$
\left\{\begin{array}{l}
u^{\prime \prime}(x)+d^{2} u(x)=0, x \in(0, T) \\
u(0)=u(T), u^{\prime}(0)=u^{\prime}(T) .
\end{array}\right.
$$

and
$K(x, y)=\left\{\begin{array}{l}\frac{\sin d(x-y)+\sin d(T-x+y)}{2 d(1-\cos d T)}, 0 \leq x \leq y \leq T, \\ \frac{\sin d(y-x)+\sin d(T-y+x)}{2 d(1-\cos d T)}, 0 \leq y \leq x \leq T .\end{array}\right.$
The main results of the present paper are as follows:
Theorem 1.1. Let $(H 1)-(H 2)$ hold. Then there exists a positive number λ^{*} such that (1.3) has a positive solution for $0<\lambda<\lambda^{*}$.

II. Preliminaries

Throughout the paper, we assume that $f(u)=f(0)$ for $u \leq 0, C[0, T]$ is a Banach space. The norm in $C[0, T]$ is defined as follows

$$
|u|_{0}=\max _{t \in[0, T]}|u(t)| .
$$

We first recall the following fixed point result of Leray-Schauder fixed point theorem in a space.

Lemma2.1. Let $0<\sigma<1$. Then there exists a positive number $\bar{\lambda}>0$ such that, for $0<\lambda<\bar{\lambda}$, the problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}(x)+d^{2} u(x)=\lambda a^{+}(x) f(u), x \in(0, T) \tag{2.1}\\
u(0)=u(T), u^{\prime}(0)=u^{\prime}(T)
\end{array}\right.
$$

has a positive solution $\overline{\mathrm{u}}_{\lambda}$ with $\left|\overline{\mathrm{u}}_{\lambda}\right|_{0} \rightarrow 0$ as $\lambda \rightarrow 0$, and

$$
\overline{\mathbf{u}}_{\lambda}(x) \geq \lambda \sigma f(0) p(x), x \in(0, T)
$$

where $\mathrm{p}(\mathrm{x})=\int_{0}^{T} K(x, y) a^{+}(y) d y$.
Proof. For each $u \in C[0, T]$, let

$$
A u(x)=\lambda \int_{0}^{T} K(x, y) a^{+}(y) f(u(y)) d y, x \in[0, T]
$$

Then $A: C[0, T] \rightarrow C[0, T]$ is completely continuous and fixed points of A are solutions of (2.1). We shall apply the Lemma 2.1 to prove that A has a fixed point for λ small. Let $\varepsilon>0$ be such that

$$
f(x) \geq \sigma f(0) \text { for } 0 \leq s \leq \varepsilon
$$

suppose that $\lambda<\frac{\varepsilon}{2|p|_{0} f^{\prime}(\varepsilon)}$, where $f^{\prime}(t)=\max _{0 \leq s \leq t} f(s)$.
Then there exists $A_{\lambda} \in(0, \varepsilon)$ such that

$$
\frac{f\left(\mathrm{~A}_{\lambda}\right)}{A_{\lambda}}=\frac{1}{2 \lambda|p|_{0}} .
$$

Let $u \in C[0, T]$ and $\theta \in(0,1)$ be such that $\mathbf{u}=\theta A u$. Then we have

$$
|u|_{0} \leq \lambda|\mathrm{p}|_{0} f / f\left(\left.u\right|_{0}\right)
$$

or

$$
\frac{f /\left(|u|_{0}\right)}{|u|_{0}} \geq \frac{1}{\lambda|p|_{0}}
$$

which implies that $|\mathrm{u}|_{0} \neq A_{\lambda}$. Note that $A_{\lambda} \rightarrow 0$ as $\lambda \rightarrow 0$. By the Lemma $2.1, A$ has a fixed point W_{0} with $\left|Q_{Q}\right|_{0} \leq A_{\lambda} \leq \varepsilon$. Consequently, $\mathscr{W}_{\lambda}(x) \geq \lambda \sigma f(0) p(x)$, $\mathrm{x} \in[0, T]$, and the proof is complete.

III. Proof of the main result

Proof of Theorem 1.1 Let $q(x)=\int_{0}^{T} K(x, y) a^{-}(y) d y$. By (H2), there exist positive numbers $\alpha, \gamma \in(0,1)$ such that

$$
\begin{equation*}
q(x)|f(s)| \leq \gamma p(x) f(0) \tag{3.1}
\end{equation*}
$$

for $\mathrm{s} \in[0, \alpha]$. Fix $\sigma \in(\gamma, 1)$ and let $\lambda^{*}>0$ be such that

$$
\begin{equation*}
|W|_{0}+\lambda \sigma f(0)|p|_{0} \leq \alpha, \tag{3.2}
\end{equation*}
$$

for $\lambda<\lambda^{*}$. where W_{Q} is given by Lemma 2.2, and

$$
\begin{equation*}
|f(x)-f(y)| \leq f(0)\left(\frac{\sigma-\gamma}{2}\right) \tag{3.3}
\end{equation*}
$$

for $x, y \in[-\alpha, \alpha]$ with $|x-y| \leq \lambda^{*} \sigma f(0)|p|_{0}$.
Let $\lambda<\lambda^{*}$. We look for a solution u_{λ} of (1.3) of the form $W_{\chi}+v_{\lambda}$.Thus v_{λ} solves

$$
\left\{\begin{array}{l}
v_{\lambda}^{\prime \prime}(x)+d^{2} v_{\lambda}=\lambda a^{+}(x)\left(f\left(W_{Q}+v_{\lambda}\right)-f\left(W_{\ell}\right)\right) \\
-\lambda a^{-}(x) f\left(W_{Q}+v_{\lambda}\right), x \in(0, T) \\
v_{\lambda}(0)=v_{\lambda}(T), v_{\lambda}^{\prime}(0)=v_{\lambda}^{\prime}(T)
\end{array}\right.
$$

For each $\omega \in C[0, T]$, let $v=A \omega$ be the solution of

$$
\left\{\begin{array}{l}
v^{\prime \prime}(x)+d^{2} v=\lambda a^{+}(x)\left(f\left(W_{Q}+\omega\right)-f\left(W_{Q}\right)\right) \\
-\lambda a^{-}(x) f\left(W_{Q}+\omega\right), x \in(0, T) \\
v(0)=v(T), v^{\prime}(0)=v^{\prime}(T)
\end{array}\right.
$$

Then $A: C[0, T] \rightarrow C[0, T]$ is completely continuous. Let $v \in C[0, T]$ and $\theta \in(0,1)$ be such that $v=\theta A v$. Then we have

$$
\begin{aligned}
& v^{\prime \prime}(x)+d^{2} v=\lambda \theta \mathrm{a}^{+}(x)\left(f\left(W_{l}+v\right)-f\left(W_{Q}\right)\right) \\
& -\lambda \theta a^{-}(x) f\left(W_{Q}+v\right)
\end{aligned}
$$

We claim that $|v|_{0} \neq \lambda \sigma f(0)|p|_{0}$, Suppose to the contrary that $|v|_{0}=\lambda \sigma f(0)|p|_{0}$. Then by (3.2) and (3.3), we obtain

$$
\left|W_{\lambda}+v\right|_{0} \leq\left|W_{\chi}\right|_{0}+\left|v_{\lambda}\right|_{0} \leq \alpha
$$

and

$$
\left|f\left(W_{l}+v\right)-f\left(W_{Q}\right)\right|_{0} \leq f(0) \frac{\sigma-\gamma}{2}
$$

which, together with (3.1) , implies that

$$
\begin{align*}
& |v(x)| \leq \lambda \frac{\sigma-\gamma}{2} f(0) p(x)+\lambda \gamma f(0) p(x) \tag{3.4}\\
& =\lambda \frac{\sigma+\gamma}{2} f(0) p(x), \mathrm{x} \in(0, T)
\end{align*}
$$

In particular

$$
\begin{aligned}
& |v(x)|_{0} \leq \lambda \frac{\sigma+\lambda}{2} f(0)|p(x)|_{0} \\
& <\lambda \sigma f(0)|p|_{0}
\end{aligned}
$$

a contraction, and the claim is proved. By the Leray-Schauder fixed point theorem, A has a fixed point v_{λ} with $\left|v_{\lambda}\right|_{0} \leq \lambda \sigma f(0)|p|_{0}$. Hence v_{λ} satisfies (3.4) and, using Lemma 2.2, we obtain

$$
\begin{aligned}
& u_{\lambda}(x) \geq W_{Q}-v_{\lambda}(x) \\
& \geq \lambda \sigma f(0) p(x)-\lambda \frac{\sigma+\gamma}{2} f(0) p(x) \\
& =\lambda \frac{\sigma+\gamma}{2} f(0) p(x)
\end{aligned}
$$

i.e., u_{λ} is a positive solution of (1.3). This completes the proof of Theorem 1.1.

IV. Application

Example 4.1 Consider the following nonlinear second-order periodic boundary value problems

$$
\left\{\begin{array}{l}
u^{\prime \prime}(x)+4 u(x)=\lambda a(x) f(u), x \in(0, T) \tag{4.1}\\
u(0)=u(T), u^{\prime}(0)=u^{\prime}(T)
\end{array}\right.
$$

where λ is a positive parameter, $a(x)=\ln x$, $f(u)=-u^{2}+1, \mathrm{u}>0$ is continuous, $d=2$ satisfies the assumption (H1).

Since $a(x)=\ln x$ is continuous on $[0, T]$, and there exists a number $k>1$ such that

$$
\int_{0}^{T} k(x, y) a^{+}(y) d y \geq k \int_{0}^{T} k(x, y) a^{-}(y) d y
$$

for every $\mathrm{x} \in[0, T]$, where a^{+}(resp. a^{-}) is the positive (resp. negative) part of $a, K(\mathrm{x}, \mathrm{y})$ is the Green's function of

$$
\left\{\begin{array}{l}
u^{\prime \prime}(x)+4 u(x)=0, x \in(0, T) \\
u(0)=u(T), u^{\prime}(0)=u^{\prime}(T)
\end{array}\right.
$$

and
$K(x, y)=\left\{\begin{array}{l}\frac{\sin 2(x-y)+\sin 2(T-x+y)}{4(1-\cos 2 T)}, 0 \leq x \leq y \leq T, \\ \frac{\sin 2(y-x)+\sin 2(T-y+x)}{4(1-\cos 2 T)}, 0 \leq y \leq x \leq T .\end{array}\right.$
which satisfies the assumption (H2).

By Theorem 1.1, if $(H 1)-(H 2)$ hold, then there exists a positive number λ^{*} such that (4.1) has a positive solution
for $0<\lambda<\lambda^{*}$.

Acknowledgment

The author is very grateful to the anonymous referees for their valuable suggestions. Our research was supported by the NSFC(71261023).

References

[1] F. M. Atici, G. S. Guseinov. On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions. J. Comput. Appl. Math. , 2001, 132(1): 341-356.
[2] J. J. Nieto, Nonlinear second-order periodic boundary value problems. J. Math. Anal. Appl.,1988, 130(1): 22-29.
[3] D. Q. Jiang. On the existence of positive solutions to second order periodic boundary value problems. Acta Mathematica Scientia, 1998, 72(7): 31-35.
[4] X. Hao, L. Liu, Y. Wu. Existence and multiplicity results for nonlinear periodic boundary value problems. Nonlinear Analysis, 2010, 72(9): 3635-3642.
[5] J. R. Graef, L. J. Kong, H. Y. Wang. Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem. Journal of Differential Equations, 2008, 245(5): 1185-1197.
[6] C. H. Gao, F. Zhang, R. Y. Ma. Existence of positive solutions of second-order periodic boundary value problems with sign-changing Green's function. Acta Mathexnaticae Applicatae Sinica, English Series, 2017, 33(2): 263-268.
[7] P. J. Torres. Existence of one-signed periodic solutions of some second-order differential equations via a Krasnosel'skii fixed point theorem. Journal of Differential Equations, 2003, 190(2): 643-662.
[8] R. Y. Ma, J. Xu. Bifurcation from interval and positive solutions for second-order periodic boundary value problems. Dynamic Systems and Applications,2010, 216(8): 2463-2471.
[9] M. Dosoudilová, A. Lomtatidze, Remark on periodic boundary value problem for second-order linear ordinary differential equations. Electron. J. Differential Equations, 2018, 13(7): 34-45.
[10] Y. Wang, J. Li, Z. X. Cai, Positive solutions of periodic boundary value problems for the second-order differential equation with a parameter. Bound. Value Prob., 2017, 49,(11) 49-58.
[11] A. Lomtatidze, Theorems on differential inequalities and periodic boundary value problem for second-order ordinary differential equations. Mem. Differ. Equ. Math. Phys.,2016, 67(7): 1-129.
[12] J. Liu, H. Y. Feng, Positive solutions of periodic boundary value problems for second-order differential equations with the non-linearity dependent on the derivative. J. Appl. Math. Comput.,2015, 49(1):343-355.
[13] J. Schauder, Der Fixpunktsatz in Funktionalraumen, Studia Math., 1930, 2: 171-180.

Hongliang Kang, Collage of Mathematics and Statistics, Northwest Normal University, Lanzhou, China, Mobile 86-18419067896

