Positive Solutions of Periodic Boundary Value Problems for a Class of Second-order Ordinary Differential Equations

Hongliang Kang

Abstract— In this paper, we consider the existence of positive solutions to the second-order periodic boundary value problems $\int u''(x) + d^2u(x) = \lambda a(x) f(u), x \in (0,T)$

u(0) = u(T), u'(0) = u'(T).

Where $f: R^+ \to R$ is continuous, f(0) > 0, d is a constant, $a: (0,T) \to R$ may change sign, and $\lambda > 0$ is sufficiently small. Our approach is based on the Leray-Schauder fixed point theorem.

Index Terms— Leray-Schauder fixed point theorem, Periodic boundary value problems, Positive solutions, Existence. MSC(2010):—39A10, 39A12

I. INTRODUCTION

Recently, periodic boundary value problems have been studied extensively $^{[1-12]}$. [1] uses the cone fixed point theorem to study the existence of positive solutions of the second-order ω - periodic boundary value problem. [2] deal with periodic boundary value problems using the method of upper and lower solutions.

In particular, in 1998, Jiang^[3] obtained the existence of positive solutions by using Krasnoselskiis fixed point theorem

$$\begin{cases} -u'' + Mu = f(t, u), x \in (0, 2\pi) \\ u(0) = u(2\pi), u'(0) = u'(2\pi). \end{cases}$$
(1.1)

The main results are as follows:

Theorem A Assume that $f(t,u):[0,2\pi]\times[0,\infty) \rightarrow [0,\infty)$ is continuous, Then the periodic boundary value problem (1.1) has a positive solutions, provided M > 0 and one of the following conditions hold:

(A1)
$$\lim_{u \to 0} \max_{t \in [0,2\pi]} \frac{f(t,u)}{u} = 0$$
, and $\lim_{u \to 0} \max_{t \in [0,2\pi]} \frac{f(t,u)}{u} = \infty$ or
(A2) $\lim_{u \to 0} \min_{t \in [0,2\pi]} \frac{f(t,u)}{u} = \infty$, and $\lim_{u \to 0} \min_{t \in [0,2\pi]} \frac{f(t,u)}{u} = 0$.

In 2010, Hao^[4] used the fixed point index theorem to discuss the existence, multiplicity and nonexistence of positive solutions for periodic boundary value problems

$$\begin{cases} u'' + a(t)u = \lambda f(t, u), & x \in (0, 2\pi), \\ u(0) = u(2\pi), u'(0) = u'(2\pi). \end{cases}$$
(1.2)

Hongliang Kang, Department of Mathematics, Northwest Normal University, Lanzhou, China, Mobile No18419067896

where $a \in L^1(0,2\pi), \lambda > 0$.

The main results are as follows:

Theorem B Assume that $f:[0,2\pi]\times[0,\infty)\to[0,\infty)$ is continuous, and

$$f_{\infty} = \lim_{x \to +\infty} \min_{t \in [0, 2\pi]} \frac{f(t, x)}{x} = \infty$$

Then there exist $\lambda^* > 0$, such that the periodic boundary value problem (1.2) has at least two positive solutions for $0 < \lambda < \lambda^*$, at least one positive solution for $\lambda = \lambda^*$ and no positive solution for $\lambda > \lambda^*$.

It is worth noting that [3] and [4] consider the case of $f:[0,2\pi]\times[0,\infty)\to[0,\infty)$ is continuous, However, we will discuss the broader situation $f:[0,T]\times R^+\to R$ is continuous. And as far as we know, second-order periodic boundary value problems have not been studied by applying the Leray-Schauder fixed point theorem.

Motivated by the above works, we will apply the Leray-Schauder fixed point theorem to establish the existence of positive solutions to the following second-order periodic value problems

$$\begin{cases} u''(x) + d^2 u(x) = \lambda a(x) f(u), x \in (0,T) \\ u(0) = u(T), u'(0) = u'(T). \end{cases}$$
(1.3)

We make the following assumptions:

(H1)
$$f: \mathbb{R}^+ \to \mathbb{R}$$
 is continuous, $f(0) > 0$
 $\lambda > 0, d > 0$ and $d^2 < \frac{4}{T}$;

(H2) *a* is a constant on [0,T], and not identically zero, there exists a number k > 1 such that

$$\int_{0}^{T} k(x, y) a^{+}(y) dy \ge k \int_{0}^{T} k(x, y) a^{-}(y) dy$$

for every $x \in [0,T]$, where a^+ (resp. a^-) is the positive (resp.negative) part of a, K(x, y) is the Green's function of

$$\begin{cases} u''(x) + d^2 u(x) = 0, x \in (0,T) \\ u(0) = u(T), u'(0) = u'(T). \end{cases}$$

and

$$K(x, y) = \begin{cases} \frac{\sin d(x - y) + \sin d(T - x + y)}{2d(1 - \cos dT)}, 0 \le x \le y \le T, \\ \frac{\sin d(y - x) + \sin d(T - y + x)}{2d(1 - \cos dT)}, 0 \le y \le x \le T. \end{cases}$$

The main results of the present paper are as follows:

Theorem 1.1. Let (H1) - (H2) hold. Then there exists a positive number λ^* such that (1.3) has a positive solution for $0 < \lambda < \lambda^*$.

II. PRELIMINARIES

Throughout the paper, we assume that f(u) = f(0) for $u \le 0$, C[0,T] is a Banach space. The norm in C[0,T] is defined as follows

$$\left|u\right|_{0} = \max_{t \in [0,T]} \left|u(t)\right|.$$

We first recall the following fixed point result of Leray-Schauder fixed point theorem in a space.

Lemma2.1. Let $0 < \sigma < 1$. Then there exists a positive number $\overline{\lambda} > 0$ such that, for $0 < \lambda < \overline{\lambda}$, the problem

$$\begin{cases} u''(x) + d^2 u(x) = \lambda a^+(x) f(u), x \in (0,T) \\ u(0) = u(T), u'(0) = u'(T). \end{cases}$$
(2.1)

has a positive solution \overline{u}_{λ} with $|\overline{u}_{\lambda}|_{0} \rightarrow 0$ as $\lambda \rightarrow 0$, and

$$\overline{\mathbf{u}}_{\lambda}(x) \ge \lambda \sigma f(0) p(x), x \in (0,T).$$

where $\mathbf{p}(\mathbf{x}) = \int_{0}^{T} K(x, y) a^{+}(y) dy.$

Proof. For each $u \in C[0,T]$, let

$$Au(x) = \lambda \int_{0}^{T} K(x, y) a^{+}(y) f(u(y)) dy, x \in [0, T].$$

Then $A: C[0,T] \to C[0,T]$ is completely continuous and fixed points of A are solutions of (2. 1). We shall apply the Lemma 2.1 to prove that A has a fixed point for λ small. Let $\varepsilon > 0$ be such that

$$f(x) \ge \sigma f(0) \text{ for } 0 \le s \le \varepsilon.$$

suppose that $\lambda < \frac{\varepsilon}{2|p|_0} f(\varepsilon)$, where $f(t) = \max_{0 \le s \le t} f(s)$.

Then there exists $A_{\lambda} \in (0, \mathcal{E})$ such that

$$\frac{\mathbf{f}(\mathbf{A}_{\lambda})}{A_{\lambda}} = \frac{1}{2\lambda \left|p\right|_{0}}$$

Let $u \in C[0,T]$ and $\theta \in (0,1)$ be such that $\mathbf{u} = \theta A u$. Then we have

$$|u|_0 \leq \lambda |\mathbf{p}|_0 f'(|u|_0)$$

or

$$\frac{\int (|u|_{0})}{|u|_{0}} \geq \frac{1}{\lambda |p|_{0}}.$$

which implies that $|\mathbf{u}|_0 \neq A_{\lambda}$. Note that $A_{\lambda} \to 0$ as $\lambda \to 0$. By the Lemma 2.1, A has a fixed point \mathscr{U}_{λ} with $|\mathscr{U}_{\lambda}|_0 \leq A_{\lambda} \leq \varepsilon$. Consequently, $\mathscr{U}_{\lambda}(x) \geq \lambda \sigma f(0) p(x)$, $x \in [0,T]$, and the proof is complete.

III. PROOF OF THE MAIN RESULT

Proof of Theorem 1.1 Let
$$q(x) = \int_{0}^{T} K(x, y)a^{-}(y)dy$$
. By

(H2), there exist positive numbers $\alpha, \gamma \in (0,1)$ such that $q(x)|f(s)| \le \gamma p(x)f(0)$, (3.1)

for $s \in [0, \alpha]$. Fix $\sigma \in (\gamma, 1)$ and let $\lambda^* > 0$ be such that

$$\left| \mathscr{U}_{2} \right|_{0} + \lambda \sigma f(0) \left| p \right|_{0} \le \alpha , \qquad (3.2)$$

for $\lambda < \lambda^*$, where $\partial \chi$ is given by Lemma 2.2, and

$$|f(x) - f(y)| \le f(0)(\frac{\sigma - \gamma}{2}),$$
 (3.3)

for
$$x, y \in [-\alpha, \alpha]$$
 with $|x - y| \le \lambda^* \sigma f(0) |p|_0$.

Let $\lambda < \lambda^*$. We look for a solution u_{λ} of (1.3) of the form $u_{\lambda} + v_{\lambda}$. Thus v_{λ} solves

$$\begin{cases} v_{\lambda}''(x) + d^2 v_{\lambda} = \lambda a^+(x)(f(\mathcal{U}_{\lambda} + v_{\lambda}) - f(\mathcal{U}_{\lambda})) \\ -\lambda a^-(x)f(\mathcal{U}_{\lambda} + v_{\lambda}), x \in (0,T) \\ v_{\lambda}(0) = v_{\lambda}(T), v_{\lambda}'(0) = v_{\lambda}'(T), \end{cases}$$

For each $\omega \in C[0,T]$, let $v = A\omega$ be the solution of

$$\begin{cases} v''(x) + d^2 v = \lambda a^+(x)(f(\partial t_{\lambda} + \omega) - f(\partial t_{\lambda})) \\ -\lambda a^-(x)f(\partial t_{\lambda} + \omega), x \in (0,T) \\ v(0) = v(T), v'(0) = v'(T), \end{cases}$$

Then $A: C[0,T] \to C[0,T]$ is completely continuous. Let $v \in C[0,T]$ and $\theta \in (0,1)$ be such that $v = \theta A v$. Then we have

$$v''(x) + d^{2}v = \lambda \theta a^{+}(x)(f(\mathcal{U}_{\lambda} + v) - f(\mathcal{U}_{\lambda}))$$
$$-\lambda \theta a^{-}(x)f(\mathcal{U}_{\lambda} + v).$$

We claim that $|v|_0 \neq \lambda \sigma f(0) |p|_0$, Suppose to the contrary that $|v|_0 = \lambda \sigma f(0) |p|_0$. Then by (3.2) and (3.3), we obtain

 $\left| \partial y_{\lambda} + v \right|_{0} \leq \left| \partial y_{\lambda} \right|_{0} + \left| v_{\lambda} \right|_{0} \leq \alpha ,$

$$\left| f(\mathcal{U}_{\lambda} + v) - f(\mathcal{U}_{\lambda}) \right|_{0} \le f(0) \frac{\sigma - \gamma}{2}$$

which, together with (3.1), implies that

and

International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-5, Issue-5, May 2018

$$\begin{aligned} \left| v(x) \right| &\leq \lambda \frac{\sigma - \gamma}{2} f(0) p(x) + \lambda \gamma f(0) p(x) \\ &= \lambda \frac{\sigma + \gamma}{2} f(0) p(x), x \in (0, T) \end{aligned}$$
(3.4)

In particular

$$|v(x)|_{0} \leq \lambda \frac{\sigma + \lambda}{2} f(0) |p(x)|_{0}$$
$$< \lambda \sigma f(0) |p|_{0}$$

a contraction, and the claim is proved. By the Leray-Schauder fixed point theorem, A has a fixed point v_{λ} with $|v_{\lambda}|_{0} \leq \lambda \sigma f(0) |p|_{0}$. Hence v_{λ} satisfies (3.4) and, using Lemma 2.2, we obtain

$$u_{\lambda}(x) \ge t_{\lambda} - v_{\lambda}(x)$$

$$\ge \lambda \sigma f(0) p(x) - \lambda \frac{\sigma + \gamma}{2} f(0) p(x)$$

$$= \lambda \frac{\sigma + \gamma}{2} f(0) p(x)$$

i.e., u_{λ} is a positive solution of (1.3). This completes the proof of Theorem 1.1.

IV. APPLICATION

Example 4.1 Consider the following nonlinear second-order periodic boundary value problems

$$\begin{cases} u''(x) + 4u(x) = \lambda a(x) f(u), x \in (0, T) \\ u(0) = u(T), u'(0) = u'(T). \end{cases}$$
(4.1)

where λ is a positive parameter, $a(x) = \ln x$, $f(u) = -u^2 + 1$, u>0 is continuous, d = 2 satisfies the assumption (*H*1).

Since $a(x) = \ln x$ is continuous on [0,T], and there exists a number k > 1 such that

$$\int_{0}^{T} k(x, y) a^{+}(y) dy \ge k \int_{0}^{T} k(x, y) a^{-}(y) dy$$

for every $x \in [0, T]$, where a^+ (resp. a^-) is the positive (resp. negative) part of a, $K(\mathbf{x}, \mathbf{y})$ is the Green's function of

$$\begin{cases} u''(x) + 4u(x) = 0, x \in (0,T) \\ u(0) = u(T), u'(0) = u'(T). \end{cases}$$

and

$$K(x, y) = \begin{cases} \frac{\sin 2(x - y) + \sin 2(T - x + y)}{4(1 - \cos 2T)}, & 0 \le x \le y \le T, \\ \frac{\sin 2(y - x) + \sin 2(T - y + x)}{4(1 - \cos 2T)}, & 0 \le y \le x \le T. \end{cases}$$

which satisfies the assumption (H2).

By Theorem 1.1, if (H1) - (H2) hold, then there exists a positive number λ^* such that (4.1) has a positive solution

for $0 < \lambda < \lambda^*$.

Acknowledgment

The author is very grateful to the anonymous referees for their valuable suggestions. Our research was supported by the NSFC(71261023).

REFERENCES

- F. M. Atici, G. S. Guseinov. On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions. J. Comput. Appl. Math., 2001, 132(1): 341-356.
- J. J. Nieto, Nonlinear second-order periodic boundary value problems. J. Math. Anal. Appl., 1988, 130(1): 22-29.
- [3] D. Q. Jiang. On the existence of positive solutions to second order periodic boundary value problems. *Acta Mathematica Scientia*, 1998, 72(7): 31-35.
- [4] X. Hao, L. Liu, Y. Wu. Existence and multiplicity results for nonlinear periodic boundary value problems. *Nonlinear Analysis*, 2010, 72(9): 3635-3642.
- [5] J. R. Graef, L. J. Kong, H. Y. Wang. Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem. *Journal of Differential Equations*, 2008, 245(5): 1185-1197.
- [6] C. H. Gao, F. Zhang, R. Y. Ma. Existence of positive solutions of second-order periodic boundary value problems with sign-changing Green's function. Acta Mathexnaticae Applicatae Sinica, English Series, 2017, 33(2): 263-268.
- [7] P. J. Torres. Existence of one-signed periodic solutions of some second-order differential equations via a Krasnosel'skii fixed point theorem. *Journal of Differential Equations*, 2003, 190(2): 643-662.
- [8] R. Y. Ma, J. Xu. Bifurcation from interval and positive solutions for second-order periodic boundary value problems. *Dynamic Systems* and Applications, 2010, 216(8): 2463-2471.
- [9] M. Dosoudilová, A. Lomtatidze, Remark on periodic boundary value problem for second-order linear ordinary differential equations. *Electron. J. Differential Equations*, 2018, 13(7): 34-45.
- [10] Y. Wang, J. Li, Z. X. Cai, Positive solutions of periodic boundary value problems for the second-order differential equation with a parameter. *Bound. Value Prob.*, 2017, 49,(11) 49-58.
- [11] A. Lomtatidze, Theorems on differential inequalities and periodic boundary value problem for second-order ordinary differential equations. *Mem. Differ. Equ. Math. Phys.*,2016, 67(7): 1 - 129.
- [12] J. Liu, H. Y. Feng, Positive solutions of periodic boundary value problems for second-order differential equations with the non-linearity dependent on the derivative. J. Appl. Math. Comput., 2015, 49(1):343 - 355.
- [13] J. Schauder, Der Fixpunktsatz in Funktionalraumen, Studia Math., 1930, 2: 171 - 180.

Hongliang Kang, Collage of Mathematics and Statistics, Northwest Normal University, Lanzhou, China, Mobile 86-18419067896