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Abstract— In this paper, we consider the existence of positive 

solutions to the second-order periodic boundary value problems 
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Where RRf : is continuous, 0)0( f , d is a 

constant, RTa ),0(: may change sign, and 0 is 

sufficiently small. Our approach is based on the Leray-Schauder 

fixed point theorem. 
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I. INTRODUCTION 

  Recently, periodic boundary value problems have been 

studied extensively
]121[ 

. ]1[ uses the cone fixed point 

theorem to study the existence of positive solutions of the 

second-order - periodic boundary value problem. ]2[ deal 

with periodic boundary value problems using the method of 

upper and lower solutions. 

     In particular, in 1998, Jiang
]3[
obtained the existence of 

positive solutions by using Krasnoselskiis fixed point theorem 

( , ), (0, 2 )
(1.1)

(0) (2 ), (0) (2 ).
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The main results are as follows: 

Theorem A Assume that ( , ) :[0,2 ] [0, ) [0, )f t u        

is continuous, Then the periodic boundary value problem 

)1.1( has a positive solutions, provided 0M  and one of 

the following conditions hold: 
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In 2010, Hao
]4[
used the fixed point index theorem to 

discuss the existence, multiplicity and nonexistence of 

positive solutions for periodic boundary value problems 

( ) ( , ), (0, 2 ),
(1.2)

(0) (2 ), (0) (2 ).
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where ),2,0(1 La .0  

The main results are as follows: 

Theorem B  Assume that ),0[),0[]2,0[: f  

is continuous, and 
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Then there exist 0*  , such that the periodic boundary 

value problem )2.1( has at least two positive solutions 

for
*0   , at least one positive solution for 

*  and 

no positive solution for 
*  . 

It is worth noting that ]3[ and ]4[ consider the case 

of ),0[),0[]2,0[: f is continuous, However, 

we will discuss the broader situation :[0, ]f T R R   

is continuous. And as far as we know, second-order periodic 

boundary value problems have not been studied by applying 

the Leray-Schauder fixed point theorem. 

Motivated by the above works, we will apply the 

Leray-Schauder fixed point theorem to establish the existence 

of positive solutions to the following second-order periodic 

value problems 
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We make the following assumptions: 

 

)1(H RRf : is continuous, 0)0( f , 

0 , 0d and 
T

d
42  ; 

 

)2(H a is a constant on ],0[ T , and not identically zero, there 

exists a number 1k such that 
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a ) is the positive 

(resp.negative) part of a , ),( yxK is the Green’s function of  
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The main results of the present paper are as follows: 

Theorem 1.1. Let )1(H - )2(H hold. Then there exists a positive 

number
* such that )3.1( has a positive solution for

*0   . 

II. PRELIMINARIES 

Throughout the paper, we assume that )0()( fuf  for 

0u , ],0[ TC is a Banach space. The norm in ],0[ TC is 

defined as follows 

)(max
],0[0

tuu
Tt

 . 

We first recall the following fixed point result of 

Leray-Schauder fixed point theorem in a space. 

 

Lemma2.1. Let 0 1.   Then there exists a positive 

number 0  such that, for 0    , the problem 

2( ) ( ) ( ) ( ), (0, )
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(0) ( ), (0) ( ).
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has a positive solution u with  
0

u 0   as 0  , and 

u ( ) (0) ( ), (0, )x f p x x T   . 

where 

0

( , ) ( ) .

T

K x y a y dy
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Proof. For each [0, ]u C T , let 

0

( ) ( , ) ( ) ( ( )) , [0, ].

T

Au x K x y a y f u y dy x T    

Then : [0, ] [0, ]A C T C T is completely continuous and 

fixed points of A are solutions of ( 2. 1) . We shall apply the 

Lemma 2.1 to prove that A has a fixed point for   small. Let 

0  be such that 

( ) (0)f x f for 0 s   . 

suppose that 
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Let [0, ]u C T and (0,1)  be such that u Au . 

Then we have 

0 0 0
p ( ),u f u %  

or 
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u p


%
. 

which implies that
0

u A . Note that 0A  as 0  . 

By the Lemma 2.1 , A has a fixed point u
%  with 

0
u A   % . Consequently, ( ) (0) ( )u x f p x % ， 

x [0, ]T , and the proof is complete. 

III. PROOF OF THE MAIN RESULT 

Proof of Theorem 1.1 Let 

0

( ) ( , ) ( )

T

q x K x y a y dy  . By 

( 2)H , there exist positive numbers (0,1)  ，  such that 

( ) ( ) ( ) (0)q x f s p x f ,                   (3.1)  

for s [0, ] . Fix ( ,1)  and let 
* 0  be such that 

0 0
(0)u f p   % ,                   (3.2)  

for 
*  . where u

% is given by Lemma 2.2,  and 
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*

0
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Let
*  . We look for a solution u of (1.3) of the form 

u v % .Thus v  solves 
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For each [0, ]C T , let v A be the solution of 

2( ) ( )( ( ) ( ))
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Then : [0, ] [0, ]A C T C T is completely continuous. Let 

[0, ]v C T and (0,1)  be such that v Av . Then we 

have 

2( ) a ( )( ( ) ( ))
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We claim that 
0 0

(0)v f p , Suppose to the 

contrary that
0 0

= (0)v f p . Then by (3.2) and (3.3) , 

we obtain 

0 0 0
uu v v      % % , 

and 

0
( ) ( ) (0) .

2
f u v f u f 

 
  % %  

which, together with (3.1) , implies that 
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a contraction, and the claim is proved. By the Leray-Schauder 

fixed point theorem, A  has a fixed point v with 

0 0
(0)v f p  . Hence v satisfies (3.4)  and, using 

Lemma 2.2 , we obtain 
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i.e., u is a positive solution of (1.3) . This completes the 

proof of Theorem 1.1.
 

IV. APPLICATION 

Example 4.1Consider the following nonlinear second-order 

periodic boundary value problems 

( ) 4 ( ) ( ) ( ), (0, )
(4.1)
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where  is a positive parameter, ( ) lna x x , 

2( ) 1f u u   , u>0  is continuous, 2d   satisfies the 

assumption ( 1)H . 

Since ( ) lna x x  is continuous on [0, ]T , and there 

exists a number 1k  such that 
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negative ) part of a , K( x, y)  is the Green's function of 
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which satisfies the assumption ( 2)H . 

 

By Theorem 1.1, if ( 1) ( 2)H H  hold, then there exists a 

positive number
*  such that (4.1)  has a positive solution 

for
*0    . 
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